Effect of Repeated Glucagon Doses on Hepatic Glycogen in Type 1 Diabetes: Implications for a Bihormonal Closed-Loop System
نویسندگان
چکیده
OBJECTIVE To evaluate subjects with type 1 diabetes for hepatic glycogen depletion after repeated doses of glucagon, simulating delivery in a bihormonal closed-loop system. RESEARCH DESIGN AND METHODS Eleven adult subjects with type 1 diabetes participated. Subjects underwent estimation of hepatic glycogen using (13)C MRS. MRS was performed at the following four time points: fasting and after a meal at baseline, and fasting and after a meal after eight doses of subcutaneously administered glucagon at a dose of 2 µg/kg, for a total mean dose of 1,126 µg over 16 h. The primary and secondary end points were, respectively, estimated hepatic glycogen by MRS and incremental area under the glucose curve for a 90-min interval after glucagon administration. RESULTS In the eight subjects with complete data sets, estimated glycogen stores were similar at baseline and after repeated glucagon doses. In the fasting state, glycogen averaged 21 ± 3 g/L before glucagon administration and 25 ± 4 g/L after glucagon administration (mean ± SEM) (P = NS). In the fed state, glycogen averaged 40 ± 2 g/L before glucagon administration and 34 ± 4 g/L after glucagon administration (P = NS). With the use of an insulin action model, the rise in glucose after the last dose of glucagon was comparable to the rise after the first dose, as measured by the 90-min incremental area under the glucose curve. CONCLUSIONS In adult subjects with well-controlled type 1 diabetes (mean A1C 7.2%), glycogen stores and the hyperglycemic response to glucagon administration are maintained even after receiving multiple doses of glucagon. This finding supports the safety of repeated glucagon delivery in the setting of a bihormonal closed-loop system.
منابع مشابه
A feasibility study of bihormonal closed-loop blood glucose control using dual subcutaneous infusion of insulin and glucagon in ambulatory diabetic swine.
BACKGROUND We sought to test the feasibility and efficacy of bihormonal closed-loop blood glucose (BG) control that utilizes subcutaneous (SC) infusion of insulin and glucagon, a model-predictive control algorithm for determining insulin dosing, and a proportional-derivative control algorithm for determining glucagon dosing. METHODS Thirteen closed-loop experiments (approximately 7-27 h in le...
متن کاملA composite model of glucagon-glucose dynamics for in silico testing of bihormonal glucose controllers.
BACKGROUND The utility of simulation environments in the development of an artificial pancreas for type 1 diabetes mellitus (T1DM) management is well established. The availability of a simulator that incorporates glucagon as a counterregulatory hormone to insulin would allow more efficient design of bihormonal glucose controllers. Existing models of the glucose regulatory system that incorporat...
متن کاملSystematically In Silico Comparison of Unihormonal and Bihormonal Artificial Pancreas Systems
Automated closed-loop control of blood glucose concentration is a daily challenge for type 1 diabetes mellitus, where insulin and glucagon are two critical hormones for glucose regulation. According to whether glucagon is included, all artificial pancreas (AP) systems can be divided into two types: unihormonal AP (infuse only insulin) and bihormonal AP (infuse both insulin and glucagon). Even t...
متن کاملFeasibility of a bihormonal closed-loop system to control postexercise and postprandial glucose excursions.
BACKGROUND The aim of this pilot study was to test the feasibility of a bihormonal (glucagon and insulin) closed-loop (CL) system by challenging the system with two meals and 30 min exercise. METHODS Ten patients with type 1 diabetes treated with continuous subcutaneous insulin infusion underwent a standardized protocol on three different occasions: 40 g carbohydrate breakfast followed 2 h la...
متن کاملA bihormonal closed-loop artificial pancreas for type 1 diabetes.
Automated control of blood glucose (BG) concentration is a long-sought goal for type 1 diabetes therapy. We have developed a closed-loop control system that uses frequent measurements of BG concentration along with subcutaneous delivery of both the fast-acting insulin analog lispro and glucagon (to imitate normal physiology) as directed by a computer algorithm. The algorithm responded only to B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 38 شماره
صفحات -
تاریخ انتشار 2015